Global optimization of generalized semi-infinite programs via restriction of the right hand side

نویسندگان

  • Alexander Mitsos
  • Angelos Tsoukalas
چکیده

The algorithm proposed in [Mitsos Optimization 2011] for the global optimization of semi-infinite programs is extended to the global optimization of generalized semi-infinite programs (GSIP). No convexity or concavity assumptions are made. The algorithm employs convergent lower and upper bounds which are based on regular (in general nonconvex) nonlinear programs (NLP) solved by a (black-box) deterministic global NLP solver. The lower bounding procedure is based on a discretization of the lower-level host set; the set is populated with Slater points of the lower-level program that result in constraint violations of prior upperlevel points visited by the lower bounding procedure. The purpose of the lower bounding procedure is only to generate a certificate of optimality; in trivial cases it can also generate a global solution point. The upper bounding procedure generates candidate optimal points; it is based on an approximation of the feasible set using a discrete restriction of the lower-level feasible set and a restriction of the right-hand side constraints (both lower and upper level). Under relatively mild assumptions, the algorithm is shown to converge finitely to a truly feasible point which is approximately optimal as established from the lower bound. Test cases from the literature are solved and the algorithm is shown to be computationally efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs

A discretization-based algorithm for the global solution of semi-infinite programs (SIPs) is proposed, which is guaranteed to converge to a feasible, ε -optimal solution finitely under mild assumptions. The algorithm is based on the hybridization of two existing algorithms. The first algorithm [Mitsos, Optimization, 60(10-11):1291-1308, 2011] is based on a restriction of the right-hand side of ...

متن کامل

A conceptual method for solving generalized semi-infinite programming problems via global optimization by exact discontinuous penalization

We consider a generalized semi-infinite programming problem (GSIP) with one semi-infinite constraint where the index set depends on the variable to be minimized. Keeping in mind the integral global optimization method of Zheng & Chew and its modifications we would like to outline theoretical considerations for determining coarse approximations of a solution of (GSIP) via global optimization of ...

متن کامل

Optimality Conditions for Semi-infinite and Generalized Semi-infinite Programs via lp Exact Penalty Functions

In this paper, we will study optimality conditions of semi-infinite programs and generalized semi-infinite programs, for which the gradient objective function when evaluated at any feasible direction for the linearized constraint set is non-negative. We consider three types of penalty functions for semi-infinite program and investigate the relationship among the exactness of these penalty funct...

متن کامل

Global Optimization Algorithms for Semi-Infinite and Generalized Semi-Infinite Programs

The goals of this thesis are the development of global optimization algorithms for semiinfinite and generalized semi-infinite programs and the application of these algorithms to kinetic model reduction. The outstanding issue with semi-infinite programming (SIP) was a methodology that could provide a certificate of global optimality on finite termination for SIP with nonconvex functions particip...

متن کامل

Calmness Modulus of Linear Semi-infinite Programs

Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide a lower bound ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2015